
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54135 543

Smart Load Balancing Algorithm towards

Effective Cloud Computing

Vibha M B
1
, Dr.R.RajuGondkar

2

Assistant Professor, Department of MCA, Dayananda Sagar College of Engineering, Bangalore, India 1

Professor, Department of MCA, Brindavan College of Engineering, Bangalore, India 2

Abstract: Cloud Computing has dominated the current era. Ithas been associated with varied areas and has grown

tremendously. Resource sharing and effective utilisation of resources is the key to its success. In its journey, cloud has

faced several challenges and has overcome many. Load balancing is one such challenge still faced by cloud.The work

here depicts methods to achieve load balancing. The objective of this paper is to highlight the role of Hadoop and
MapReduce to attain load balancing. The partition strategy is used to achieve load balancing. Hadoop, a Java based

open source frame work is capable of storing and processing large data. MapReduce programming model is used to

obtain parallel processing.

Keywords: Load Balancing, Partitioning, Hadoop, MapReduce, Scheduling.

I. INTRODUCTION

Distributed systems have seen tremendous advancement in

performing various operations and cloud has been

efficacious to provide a flexible and scalable approach.
Cloud computing is an extensive distributed computing

standard and is widely adopted by organisations. The

abstracted, virtualized, computing power, storage,

platforms and services of cloud are delivered on demand

to the users over the Internet. Google, Amazon, IBM and

many others have developed their own cloud platforms

which manage multiple nodes and heterogeneous

applications. With the massive growth in recent years,

cloud computing still poses challenges to researchers.

Virtual machines create many logical resources and

workstations/servers. These apart from the physical nodes
are managed by Datacentres. The Datacentres hosts

network’s most critical systems and are vigorous to the

continuity of daily tasks. The scalable property of cloud

has forced these data centres to adapt optimal techniques

to manage/balance the load. The objective of load

balancing is to optimize resource utility, to provide high

throughput, maximize response time and elude

overloading of resources.

Load balancing is dividing the amount of work that a

computer has to perform between two or more computers,

a cluster, network links, CPU’s or disk units so that more
tasks are processed in the same amount of time and

provide faster service [16][1]. Load balancing is the most

effective way to solve the above problem in a cloud

computing infrastructure, which ensures that services are

delivered transparently regardless of the physical

implementation and location within the “cloud” [2]. Load

balancing in cloud computing provides an efficient

solution to various issues pertaining to cloud computing

environment set-up and usage. Load balancing must take

into account two major tasks, one is the resource

provisioning or resource allocation and other is task

scheduling in distributed environment. Efficient allocation

of resources and scheduling of resources as well as tasks
will ensure resource availability on demand, effective

utilization of resources, energy conservation and cost

efficiency [3].

The load balancing can be achieved at local operating

system by scheduling the tasks, thus improving the

performance of the system. However global scheduling is

required to decide the multiprocessor execution. They are

categorised into static, dynamic and adaptive. Decisions

taken in static load balancing algorithms use prior

knowledge of the system while dynamic algorithms use
system state information to take decisions [4]. Adaptive

load balancing algorithms are also a type of dynamic

algorithms. They dynamically change their parameters or

policies that suit the changing system state [4]. An

efficient load balancing algorithm will have to ascertain

that every node in the system performs equal or similar

task. These algorithms play a vital role in providing

effective utilisation of the resources in cloud.

Enormous data is being generated across the globe every

minute. The data if not handled properly creates data

explosion. Social media like Facebook, Twitter, Youtube,
etc. alone contributes huge mass of data, thus posing a

challenge to the researchers for data handling.

The objective of this paper is to show how Hadoop can be

implemented to balance the load. The paper is structured

as follows in the following Sections. In section 2, a model

for load balancing is put forth. Section 3, outlines

theHadoop Distributed File System [HDFS] and related

work for load balancing. The MapReduce programming

model is presented in section 4. Section 5 discusses the

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54135 544

various scheduling algorithms with a comparative

analysis. Section 6 discusses conclusions with future

work.

II. MODEL FOR LOAD BALANCING

Cloud comprises of nodes spanned across various

geographical locations. Partitioning the cloud will help to

manage its functioning. Cloud partition is a subarea of the

cloud with divisions based on the geographic locations [6].

Partitions help in managing the load. The job to be
processed arrives and the Partition Controller decides the

partition to which the job has to be sent for processing.

The Partition Controller also finds if there is a need for

any further partition. If so it is done. Then the job is

assigned to the Job Balancer. The Job Balancer uses

strategies to assign job. The Job Balancer has to choose

appropriate partition based on the partition status, which

are of three categories:

a. Idle: Degree-Load(M)=0
b. Normal:0<Degree_Load(M)<Degree_Loadupperlimit

c. Overload: Degree_Load(M)>Degree_Loadupperlimit

d. Breakdown of Partition.

where parameters are set by Job balancer, M=No. of CPU

cycles and process execution time involved,

Degree_Load= Threshold limit [6].

The Partition Controller dispatches the jobs to the

partitions. In case of idle and normal situations, the job is

handled in the same partition. In case of overload, a

different partition in looked for and the tasks are
distributed to them. The fourth state is handled at the time

of physical failure of partition.

The jobs are assigned by gathering status of information

from each node. The degree of the load is based on various

static and dynamic parameters. The physical entities like

CPU speed and utilisation, disk memory, network

bandwidth etc. constitutes static parameters.

Fig1: Relation between Partition Controller and Job

Balancer.

The Partition Controller and Job Balancer are in

communication to determine the suitable partition. The

Job Balancer here uses MapReduce framework to break

the tasks and perform parallel processing.

III. HADOOP FRAMEWORK

Hadoop is a Java based open source framework. Hadoop is

used by many companies like Yahoo, Facebook and

Amazon to process their big data generated everyday [17].

Hadoop is employed to deal with large amounts of data,
called Big Data, as it provides users a reliable storage with

the help of Hadoop Distributed File System and adopts the

MapReduce model to process the data in the Hadoop

cluster [5]. The three major classifications of roles in a

Hadoop deployment are Client, Master nodes and Slave

nodes. The two core parts of Hadoop are Hadoop

Distributed File System (HDFS) and MapReduce

framework. The HDFS is used for storing voluminous

data, which the normal RDBMS has failed to and

MapReduce is used for parallel processing of data. The

two key phases HDFS and MapReduce, uses Master nodes
to coordinate with their respective slave nodes. The Name

Node coordinates with data storage (HDFS), while the Job

Tracker Master allows parallel computations on all the

data (MapReduce). Slave nodes are Data Node

coordinating with Name Node and Task Tracker

coordinating with Job Tracker. They execute the task

designated by their Masters [18].

 Fig 2: Hadoop server Roles

The data blocks are located on data nodes and Hadoop

divides data nodes on different racks. Hadoop installed on

a very large cluster can span many data centres, which

consists of multiple racks. The clusters are designed for

storing and analysing huge amount of unstructured data in

distributed environment. The data is loaded to the cluster

(HDFS writes), analysed (MapReduce), Store the results in

cluster (HDFS writes) and read from the cluster [18]. The
client breaks the data into three blocks and consults the

Name Node to send the data. It receives a list of three data

nodes that having the replica of this block. The client

writes the block to the Data Node, which is located on the

local rack. That Data Node in turn replicates two other

Data Nodes located on another rack. The intention of

having multiple copies is that, in case there is a failure in

one rack, other racks can resume its task. The Name Node

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54135 545

provides the map of where data is located and where the

data should go in the cluster. The data blocks of Hadoop

are large and default block size is 64 megabytes. The data

node sends periodical report to the Name Node about the

available blocks, its location, storage capacity and transfer

latency. This is known as Heartbeat from a data node.

Receiving the heartbeat, the Name Node instructs the

operations. Currently Hadoop is being used to develop and

schedule programs. The advantage of having Hadoop for

load balancing is that, it is capable of performing parallel

processing using MapReduce function. Hadoop is capable
of providing stable, scalable and reliable interface to the

users. It can run applications in the cluster that consists of

a large number of inexpensive hardware. The key

scheduling of Hadoop is Task scheduling, which will

control the tasks and resources thus improving the

performance of the system.

TABLE I: COMPONENTS OF HADOOP SYSTEM

Node Type Task

Name Node It provides the meta data and consists

of the information about

location/address of the data blocks.

Data Node Sends heart beat to the Name Node in

a ordered time interval

Job Tracker Responsible to schedule, allocate and
monitor job execution on slave Task

Tracker

Task

Tracker

Follow the instructions of Job

Tracker using MapReduce functions.

IV. MAPREDUCE PROGRAMMING MODEL

Voluminous data has to be managed by dividing the work

into set of independent tasks, thus making it possible for

parallel computation. MapReduce is a programming model

designed for processing large volumes of data. It is a style

of parallel programming that is supported by some

capacity-on-demand-style [19].A MapReduce breaksthe
input data-set into independent pieces which are processed

by the map tasks in a parallel manner [20]. The first

function Map picks up a chunk with a key/value pair. It in

turn generates intermediate key/value pair and then this is

sorted based on the key/value and delivers onto Reduce

function. The Reduce function combines these values to

produce a set of values. The value generated per Reduce

phase is usually one or zero output. Map phase is meant to

divide the job to tasks and Reduce function assembles the

results of tasks to produce a final outcome. There are three

steps in MapReduce[20]

Step1: Mapper - Input to Mapper is set in the Driver

program of a particular Input Format type and file(s) on

which the Mapper process has to run. The output of

Mapper will be a map <key, value>, key and value set in

Mapper output is not saved in HDFS, but an intermediate

file is created in the OS space path and that file is read and

shuffle and sorting takes place.

Step 2: Shuffling and Sorting- Shuffle and sort are

intermediate steps in MapReduce between Mapper and

Reducer, which is handled by Hadoop and can be

overridden if required. The Shuffle process aggregates all

the Mapper output by grouping key values of the Mapper

output and the value will be appended in a list of values.

So, the Shuffle output format will be a map <key, List<list

of values>> [20].

Step3: Reducer- Reducer is the aggregator process where

data after shuffle and sort, is sent to Reducer where we

have <key, List<list of values>>, and Reducer will

process on the list of values. Each key could be sent to a
different Reducer. Reducer can set the value, and that will

be consolidated in the final output of a MapReduce job

and the value will be saved in HDFS as the final output

[20].

 Fig 3: MapReduce Phases

The framework sorts the outputs of the maps, which are

then input to the reduce tasks. Typically both the input and

the output of the job are stored in a file-system. The

framework takes care of scheduling tasks, monitoring

them and re-executes the failed tasks. The typical

MapReduce program will contain three different

components namely: a driver class, a mapper class and a

reducer class. The pseudo code is shown below[21]:

map(InputKeyType inputKey, InputValueType inputVal

ue):

//do processing on the inputKey and inputValue and

form intermediateKey , intermediateValue pair

Emit(intermediateKey, intermediateValue);

// map can emit more than one intermediate key-value

pairs

reduce(IntermediateKeyType intermediateKey, Iterator

values):

//the values associated with a particular intermediateKey is

iterated and a user-specified operation is performed over

the values

// multiple reducers can run in parallel and the number of

reducers is specified by the user

//outputKey will contain the key output from the reducer

and outputValue will contain the value that is output for

that particular key

Emit(outputKey, outputValue);

// reduce method can emit more than one output key-value

pairs
To optimize the processing capacity of the map phase,

MapReduce can run several identical mappers in parallel.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54135 546

Since every mapper is the same, they produce the same

result as running one map function [21].

V. COMPARATIVE ANALYSIS OF VARIOUS

ALGORITHMS

To compare the performance of algorithms, we have to

consider three basic factors namely locality, fairness and

synchronization. Locality is the distance between input

data node and task designated node. Fairness is the trade-

offs between the locality and dependency between the
maps and reduce phases. Synchronization is the process of

transmitting the intermediate output of the map processes

to the reduce processes as input [7]. The task scheduling

activities is directly affecting the system optimization of

Hadoop and system resources utilization. Several

approaches have been tried to provide solutions. Each

algorithm will have its own pros and cons.

A. FIFO Scheduling

This is the simplest algorithm used by Hadoop which

operates on the principle of a queue. This is a straight
forward and non-pre-emptive algorithm. It can be used on

small clusters, where prior knowledge of the system is

known. In this method, the actual job is partitioned into

individual jobs and loaded to the queue. The Task Tracker

assigns the jobs to the free blocks that are available. The

jobs dominate the cluster, complete the task assigned and

then passes the control to the next job. The subsequent

jobs in the queue have to wait until the previous job passes

the control. In other words it is sequential execution. This

is a disadvantage because, the priority based and short jobs

have to wait for their turn. The main advantage of this

scheduling is its implementation is simple.

B. Fair Scheduling

This algorithm was developed by Facebook to manage the

access to their Hadoop cluster [8]. Fair scheduling is a

method of assigning resources to jobs such that all jobs

get, on average, an equal share of resources over time.

When there is a single job running, that job uses the entire

cluster. When other jobs are submitted, tasks slots that free

up are assigned to the new jobs, so that each job gets

roughly the same amount of CPU time. It is also an easy

way to share a cluster between multiple of users. Fair
sharing can also work with job priorities - the priorities are

used as weights to determine the fraction of total compute

time that each job gets. The fair scheduler organizes jobs

into pools, and divides resources fairly between these

pools. This can be useful when jobs have a dependency on

an external service like a database or web service that

could be overloaded if too many map or reduce tasks are

run at once. [22]. It is pre-emptive algorithm. Short jobs

are given more attention to complete the task quickly and

longer jobs are also taken care fairly.

C. Capacity Scheduling

Capacity planning is the process of determining the

production capacity needed by an organization to meet

changing demands for its products. [23]. This has been the

traditional and vertical way of scaling up web applications,

however IT capacity planning has been developed with the

goal of forecasting the requirements for this vertical

scaling approach[24] This algorithm’s aim is to manage a

fair scheduling among huge mass of users.

The Capacity Scheduler allocates jobs based on the

submitting user to queues with configurable numbers of

Map and Reduce slots [9]. When a slot is free, the Task

Tracker selects the lowest load, through which the oldest

job was designated. This scheduling enforces cluster’s

capacity shared among users than between the jobs.

D. Longest Appropriate Time to End(LATE)

LATE was proposed by Zaharia et al[10].This functions

MapReduce in heterogeneous environment. It has robustly

improved the system performance when compared to

classical algorithms.

LATE scheduler has made an attempt to improve Hadoop

by identifying slow tasks. It rates the jobs by estimated

time remaining and starts a copy of the highest ranked task

that has a progress rate lower than the Slow Task

Threshold[11]. LATE’s methodology is based on

prioritizing tasks to speculate, Locating fast nodes to
execute and overlaying speculative tasks to avoid

thrashing[7]. The advantage of this algorithm is robustness

and heterogeneity.

E. Self Adaptive Map Reduce[SAMR]

LATE fails to identify real slow tasks. SAMR improvises

MapReduce and effectively uses system resources. SAMR

can be used to improve accountability for data locality.

SAMR decreases the total execution time up to 25%

compared with Hadoop’s scheduler and 14% compared to

LATE scheduler[12].

F. Delay Scheduling

Delay scheduling is used to improve data locality by

asking jobs to wait for its turn for scheduling on a node

with local data. In this scheduling, if the head-of-line

cannot launch a local task, it is skipped and looks out for

subsequent tasks. Non-local jobs are allowed to launch in

case the local node has missed the jobs, to avoid

starvation.

G. Ant Colony Optimization(ACO)

The algorithm works based on the heuristic approach.
Whenever a request is initiated, the ants and pheromones

are initiated. The ants move towards the head node.

The forward movement indicates the ant is moving from

the overloaded node to the other by verifying whether the

other node is overloaded or not. If the Ant finds under

loaded node, it will continue forward movement towards
head, else it will take a backward movement to get to the

previous node. The Ant commits suicide, when it reaches

the Target node to avoid further backward movements.

A comparison of the algorithms discussed above is

summarised below:

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54135 547

TABLE III: COMPARISON OF ALGORITHM

VI.CONCLUSION

The above work, addresses the complexity of load

balancing by partitioning the cloud. The partitioned cloud

is managed by the Partition Controller and Job Balancer.

The work envisages the open source Hadoop framework to

handle and control data. It uses MapReduce programming

model to handle parallel processing of data. Importance of

Hadoop’s HDFS is also highlighted in order to store data.
A comparative study of MapReduce algorithms is made.

The choice of the algorithm depends on the locality,

fairness and the size of the cluster. The future work will be

to concentrate in creating a cluster and schedule the tasks

using the appropriate MapReduce algorithm.

ACKNOWLEDGMENT

I acknowledge Bharathiar University, Coimbatore for

providing me an opportunity to carry out research in the

field of computer science.

REFERENCES

1. Suguna R, DivyaMohandass, Ranjani R, “A Novel Approach For

Dynamic Cloud Partitioning And Load Balancing In Cloud

Computing Environment”, Department of CSE,SKR Engineering

college, ISSN: 1992-8645,

2. RenGao and et al, “Dynamic Load Balancing Strategy for Cloud

Computing with Ant Colony Optimization” School of Information

Engineering, Hubei University of Economics, China, Future

Internet 2015, 7(4), Page No. 465-483

3. MayankaKatyal*, Atul Mishra , “A Comparative Study of Load

Balancing Algorithms in Cloud Computing Environment”,

Published online in www.publishingindia.com

4. Niranjan G. Shivaratri, Phillip Krueger, and MukeshSinghal“Load

Distributing for Locally Distributed Systems”, volume:

25, Issue:12 ,ISSN:0018-9162,Ohio State University.

5. XiaofeiHou, Ashwin Kumar T K, Johnson P Thomas “Dynamic

Workload Balancing for Hadoop MapReduce”, Computer Science

Department Oklahoma State University Stillwater, OK, USA.

6. GaochaoXu, Junjie Pang, and Xiaodong Fu, “A Load Balancing

Model Based on Cloud Partitioning for the Public Cloud”, Tsinghua

Science And Technology ISSN ll1 0 07 - 0 214ll0 4/12llp p 4-3 9

Volume 18, Number 1, February 2013.

7. Seyed Reza Pakize,”A Comprehensive View Of Hadoop Map

Reduce Scheduling Algorithms”,International Journal of computer

networks and communications security,Vol. 2,Issue 9,pp.308-

317,September 2014

8. B. ThirmalaRao, N. V. Sridevei, V. Krishna Reddy, LSS.Reddy,

“Performance Issues of Heterogeneous Hadoop Clusters in Cloud

Computing”, Global Journal Computer Science & Technology Vol.

11, Issue 8, pp.81-87,May 2011

9. "Terms & Definitions - Supply Chain Management". North

Carolina State University. 2006. Retrieved 2008-10-2

10. wikipedia.org/wiki/Capacity_planning

11. Dean, J. and Ghemawat, S., “MapReduce: a flexible data

processing tool”, communication of ACM,Vol. 53,Issue 1,pp72-

77,January 2010

12. M. Zaharia, A. Konwinski, A.D. Joseph, R. Katz and I. Stoica,

“Improving MapReduce performance in heterogeneous

environments ” In: OSDI 2008: 8th USENIX Symposium on

Operating Systems Design and Implementation 2008. [24]Q. Chen,

D. Zhang, M. Guo, Q. Deng Q and S.

13. B.P Andrews and A. Binu, “ Survey on Job Schedulers in Hadoop

Cluster ”, IOSR Journal of Computer Engineering, Vol.15, NO. 1,

Sep. - Oct. 2013, pp. 46-50

14. S. Khalil, S.A. Salem, S. Nassar and E.M. Saad, “Mapreduce

Performance in Heterogeneous Environments: A Review”,

International Journal of Scientific & Engineering Research, Vol. 4,

NO. 4, April - 2013, pp. 410-416

15. Vijay Vardan, Dept. of Computing, Macquarie University, Sydney,

Australia, proceedings 2014 IEEE Fourth International Conference

on Big Data and Cloud Computing
16. K. Shvachko, H. Kuang, S. Radia, R. Chansler, "The Hadoop

Distributed File System", in Proceedings of IEEE Conference on

Mass Storage Systems and Technologies (MSST), 2010.

17. Radojevic, B. and M. Zagar, "Analysis of issues with load

balancing algorithms in hosted (cloud) environments." in

proc.34
th
 International Convention on MIPRO, IEEE, 2011.

18. Searchnetworking.techtarget.com/definition/load-balancing

19. T. White. Hadoop: “The Definitive Guide O'Reilly Media, Inc,

2010

20. hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html#MapReduce

21. www.ibm.com/developerworks/cloud/library/cl-mapreduce/

22. howtodoinjava.com/big-data/hadoop/hadoop-mapreduce-tutorial-

for-beginners/

23. https://hadooptutorial.wikispaces.com/MapReduce

24. https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html

25. www.hadooptutorial.wikispaces.com/MapReduce

BIOGRAPHY

Mrs. Vibha M B is an academician with

over 11 years of experience. She is

currently working in Dayananda Sagar

College of Engineering, Bangalore and

pursuing Ph.D from Bharathiar University

Coimbatore, India.

